Utilizing the Inspection Tool

Summary

This guide will describe the eGovFrame’s Code Inspection tool called PMD and its basic usage.

Basic manual
You can run Code Inspection from the IDE’s PMD Perspective in order to batch-inspect code conveniently.

Switching to PMD Perpective

Following is how to switch to the PMD Perspective.

1. Choose 'Window' > 'Open Perspective' > 'Other…' from the menu

2. Choose PMD from the Open Perspective window

3. After switching to the PMD Perspective, you will see Package Explorer, Violation Outline, Violation Overview and other views within the IDE.[image: image1][image: image5.jpg][image: image6.jpg][image: image7.jpg][image: image8.jpg][image: image9.jpg]

Running code inspection

Choose a project to inspect.

In the Package Explorer, right-click on the project, and choose PMD > Check Code with PMD in the context menu.

The entire project’s source code will be inspected. If you want to run inspections only on individual source files, apply the same step as above on the files from the Package Explorer.

Only Java source codes will run through the inspection, and the following will be excluded.[image: image10.jpg][image: image11.jpg][image: image12.jpg][image: image13.jpg][image: image14.jpg][image: image15.jpg][image: image16.jpg][image: image17.jpg][image: image18.jpg][image: image19.jpg][image: image20.jpg][image: image21.jpg][image: image22.jpg]

Include files

JAR files and other binaries

Inspection results

After the inspection, you can check the results and see the violating codes.

PMD Perspective provides multiple views for you to see the inspection results.

[image: image32.png]
Package Explorer
If there are violating code areas within the project, similar to compile errors, the project icon and the violating source icons in the Package Explorer will display red X boxes as below. ([image: image2.jpg][image: image3.jpg])

These icons will persist until the violations have been corrected.
Problem view

Problem view will list the violating lines in the source code. Open the Problem view in the PMD Perspective as follows.

1. Window > Show View > Other… in the Eclipse menu

[image: image4]
2. In the Show View dialog, choose Problem under the General category.[image: image23.jpg][image: image24.jpg][image: image25.jpg][image: image26.jpg][image: image27.jpg][image: image28.jpg][image: image29.jpg][image: image30.jpg][image: image31.png]

Use the Problem view to see the violating lines, and access them in the editor to fix the violated source codes.

Double-clicking an entry will jump to the violating line in the Editor.

Violations Overview view

Using Violations Overview will be described in the Reporting inspection results section later on.

Resetting inspection results
Inspection results will persist on the source until you edit them.

You may need to reset the inspection results because it may be confusing to distinguish between inspection results and code compile error results. Or, if you want to re-run inspection, you need to reset inspection results.

In order to reset inspection results, choose a project and reset it as below.

In the Package Explorer, right-click on the project, and choose PMD > Clear PMD Violations from the context menu.
This will reset the inspection results, and will hide the Problem view, Violations Overview view, and Package Explorer view in the IDE.

eGovFrame standard inspection rules

eGovFrame defines total of 39 rules for Code Inspection in terms of logical/phrase/reference errors. eGovFrame rule set needs to be installed according to the standard installation guideline; each rule will be explained in the following sections, as well as examples of violating codes, remedies, and compliant codes.

Rule#01. EmptyCatchBlock

Description: using empty catch statements

Problematic code:

public void doSomething() {

try

{

FileInputStream fis = new FileInputStream("/tmp/bugger");

}

catch (IOException ioe)

{

//

}

}

Recommendation: Always use handling code in catch blocks

Rule#02. EmptyIfStmt

Description: empty if conditions

Problematic code:
public class Foo {

void bar(int x) {

if (x == 1) {

//

}

}

}

Recommendation: avoid empty if conditions

Rule#03. EmptyWhileStmt

Description: empty while conditions

Problematic code:

public class Foo {

void bar(int a, int b) {

while (a == b) {

//

}

}

}

Recommendation: avoid empty while conditions

Rule#04. EmptyTryBlock

Description: empty try conditions

Problematic code:

public class Foo {
public void bar() {
try
{
}
catch (Exception e)
{
e.printStackTrace();
}
}
}
Recommendation: avoid empty try conditions

Rule#05. EmptyFinallyBlock

Description: empty finally statements

Problematic code:

public class Foo {
public void bar() {
try
{
int x=3;
}
finally
{
//
}
}
}
Recommendation: there must not be any empty finally statments
ule#06. UnnecessaryConversionTemporary

Unnecessary String conversions into temporary variables

Problematic code:

public String convert(int x) {

public String convert(int x) {
String foo = new Integer(x).toString();
return foo;
}
Recommendation: when converting data type into String, avoid creating temporary String variables

Rule#07. EmptyStatementNotInLoop

Description: unnecessary semi-colons

Problematic code:

public class MyClass {
public void doit() {
;
System.out.println("look at the extra semicolon");;
}
}
Recommendation: avoid using empty statements with semi-colons only.

Rule#08. WhileLoopsMustUseBraces

Description: bracket-less while statements

Problematic code:

public void doSomething() {
while (true)
x++;
}
Recommendation: avoid using while statements without brackets

Rule#09. AssignmentInOperand

Description: assignments within conditions/operands
Problematic code:

public class Foo {
public void bar() {
int x = 2;
if ((x = getX()) == 3) {
System.out.println("3!");
}
}
private int getX() {
return 3;
}
}
Recommendation: avoid using assignments in conditions/operands, because it decreases code readability and increases complixity

Rule#10. UnnecessaryParentheses

Description: unnecessary parentheses

Problematic code:

public class Foo {
boolean bar() {
return (true);
}
}
Recommendation: avoid unnecessary parentheses, because it decreases code readability

Rule#11. SimplifyBooleanExpressions

Description: unnecessary boolean comparisons

Problematic code:

public class Bar {
private boolean bar = (isFoo() == true);

private boolean bar = (isFoo() == true);
public isFoo() {
return false;
}
}
Recommendation: avoid using unnecessary boolean comparisons

Rule#12. SwitchStmtsShouldHaveDefault

Description: default-less switch statements

Problematic code:

public class Foo {
public void bar() {
int x = 2;
switch (x) {
case 2;
int j = 8;
}
}
}
Recommendation: always define switch label in switch statements

Rule#13. AvoidReassigningParameters

Description: reassigning parameters

Problematic code:

public class Foo {
private void foo(String bar) {
bar = "something else";
}
}
Recommendation: parameters shall not be modified in value.
Rule#14. FinalFieldCouldBeStatic
Description: using static instead of final

Problematic code:

public class Foo {
public final int BAR = 42;
}
Recommendation: switching to static instead of final can reduce overhead

Rule#15. EqualsNull

Description: null comparison using equals()

Problematic code:
class Bar {
void foo() {
String x = "foo";
if (x.equals(null)) {
doSomething();
}
}
}
Recommendation: equals method shall not be used for comparing null values

Rule#16. SimpleDateFormatNeedsLocale

Description: locale-less SimpleDateFormat

Problematic code:

public class Foo {
private SimpleDateFormat sdf = new SimpleDateFormat("pattern");
}
Recommendation: always assign locale when using SimpleDateFormat

Rule#17. ImmutableField

Description: use final for constructor variables

Problematic code:

public class Foo {
private int x;
public Foo() {
x = 7;
}
public void foo() {
int a = x + 2;
}
}
Recommendation: use final variable type for constructor variables

Rule#18. AssignmentToNonFinalStatic

Description: erroneous usage of static type

Problematic code:

public class StaticField {
static int x;
public FinalFields(int y) {
x = y;
}
}
Recommendation: avoid using static fields in unsafe manner
Rule#19. AvoidSynchronizedAtMethodLevel
Description: overusing synchronization at method level

Problematic code:

public class Foo {
synchronized void foo() {
}
}
Recommendation: use synchronization only for blocks rather than methods

Rule#20. AbstractClassWithoutAbstractMethod

Description: defining abstract class without abstract methods

Problematic code:

public abstract class Foo {
void int method1() {
// ...
}
void int method2() {
// ...
}
}
Recommendation: always define abstract methods in abstract classes

Rule#21. UncommentedEmptyMethod

Description: comment-less empty methods

Problematic code:

public void doSomething() {
}

}
Recommendation: always indicate empty methods with comments

Rule#22. AvoidConstantsInterface

Description: using constants in interfaces

Problematic code:

public interface ConstantsInterface {
public static final int CONSTANT1 = 0;
public static final String CONSTANT2 = "1";
}
Recommendation: use interfaces only for defining class behaviors

Rule#23. DuplicateImports

Description: duplicate import statements

Problematic code:

import java.lang.String;
import java.lang.*;
public class Foo {
}
Recommendation: avoid using duplicate import statements

Rule#24. ImportFromSamePackage

Description: importing from same package

Problematic code:

package foo;
import foo.Buz;
import foo.*;
public class Bar {
}
Recommendation: avoid importing from same package

Rule#25. SystemPrintln

Description: using System.out.print

Problematic code:

class Foo{
public void testA () {
System.out.println("Entering test");
}
}
Recommendation: avoid System.out.print, instead use customized message printing

Rule#26. VariableNamingConventions

Description: under-bars in variable names

Problematic code:

public class Foo {
public static final int MY_NUM = 0;
public String myTest = "";
DataModule dmTest = new DataModule();
}
Recommendation: do not include underlines for variables that are not final
Rule#27. MisleadingVariableName

Description: using erroneous prefixes for variables

Problematic code:

public class Foo {
public void bar(String m_baz) {
int m_boz = 42;
}
}
Recommendation: avoid using m_ prefixes for non-fields

Rule#28. AvoidArrayLoops

Description: loops for copying arrays

Problematic code:

public class Test {
public void bar() {
int[] a = new int[10];
int[] b = new int[10];
for (int i=0;i<10;i++) {
b[i]=a[i];
}
}
}
Recommendation: avoid loops and instead use System.arraycopy() for array copies

Rule#29. UnnecessaryWrapperObjectCreation

Description: unnecessary WrapperObjects

Problematic code:

public int convert(String s) {
int i, i2;
i = Integer.valueOf(s).intValue();
i2 = Integer.valueOf(i).intValue();
Recommendation: use custom parse-related methods instead

Rule#30. AvoidThrowingRawExceptionTypes

raw exception types

Problematic code:

public class Foo {
public void bar() throws Exception {
throw new Exception();
}
}
Recommendation: use more specific exceptions

Rule#31. AvoidThrowingNullPointerException

Description: using null pointer exceptions

Problematic code:

public class Foo {
void bar() {
throw new NullPointerException();
}
}
Recommendation: avoid using NullPointerException

Rule#32. StringInstantiation

Description: using unnecessary String instances

Problematic code:

public class Foo {

public class Foo {
private String bar = new String("bar");
}
Recommendation: use more simple variables

Rule#33. StringToString

Description: using toString() on a String instance

Problematic code:

public class Foo {
private String baz() {
String bar = "howdy";
return bar.toString();
}
}
Recommendation: avoid calling toString() on String instances

Rule#34. InefficientStringBuffering

Description: combining strings inside StringBuffer() constructor

Problematic code:

StringBuffer sb = new StringBuffer("tmp =" +
System.getProperty("java.io.tmpdir"));
Recommendation: use append method instead

Rule#35. InefficientEmptyStringCheck

Description: using null check or zero size check on Strings

Problematic code:
public class Foo {
void bar(String string) {
if (string != null && string.trim().size() > 0) {
doSomething();
}
}
}
Recommendation: use custom logic instead to differentiate whitespace and non-whitespace

Rule#36. UselessStringValueOf

Description: using String.valueOf() when appending

Problematic code:

public String convert(int i) {
String s;
s = "a" + String.valueOf(i);
return s;
}
Recommendation: avoid calling String.valueOf() when appending

Rule#37. UnusedPrivateField

Description: unused private fields

Problematic code:

public class Something {
private static int FOO = 2; // Unused
private int i = 5; // Unused
private int j = 6;
public int addOne() {
return j++;
}

}
}
Recommendation: avoid unused private fields

Rule#38. UnusedPrivateMethod

Description: unused private methods

Problematic code:

public class Something {
private void foo() {} // unused
}
Recommendation: avoid unused private methods

Rule#39. UnusedFormalParameter

Description: unused method parameters

Problematic code:

public class Foo {
private void bar(String howdy) {
// howdy is not used
}
}
Recommendation: avoid unused method parameters
Reporting inspection results

You can aggregate and report inspection results as below.

Reports in Violations Overview

Inspection results can be checked immediately in the IDE as below.

Violations Overview displays a grid for listing statistic violating codes, and control buttons to control the grid on the top right.

Button functionalities

Statistics button: refreshes the statistics grid. Should be used after using the priority button, or any violation

is fixed.

Priority buttons: filters violating items in the grid. Five, different-colored buttons that denote from 1 to 5 (low to high, from left to right). 1s and 2s (red and orange) are must-fixes. Each button are toggle-style buttons.

 Collapse statistics button: collapses all the statistics items in the grid to initial state.

 View menu: selects sorting method for the grid. The options are as follows:

Show violations to packages: sorts violating items by packages.

Show violations to files: sorts violating items by files.

Show packages with files: sort by packages, along with displaying file information.

Grid components

Element: violating packages, files, and detailed information.

Violations: violation count for the selected element.

3)
Violations/LOC: parts-per-thousand (per-mil), as in violations per 1,000 lines of code.

Violations/Method: violations per method, or average violations per method for package elements.

Project: name of project that the selected violating element belongs to.

These statistical information can be utilized by the developer, directly from the IDE, for improving code quality.

Per-file report generation

To generate per-file reports, choose a project, then proceed as follows.

In Package Explorer, choose Project, then right-click on it.

In the context menu, choose PMD > Generate reports.

Confirm generated report

Multiple file formats are supported for per-file inspection report generation.

CSV, HTML, TXT, and XML files can be created under the reports folder inside the project.

Reviewing reports

Reports display all the inspection results in a single file view. Following is an example of an HTML report file opened in a browser.

Fixing broken Korean fonts in reports

PMD’s report files use UTF-8 encoding to generate Korean text, so if you see broken Korean fonts follow the guideline below.
Web browser : opening HTML reports, and your encoding is set to Korean:

Switch to UTF-8 (Unicode).

Microsoft Internet Explorer:

From the menu bar, choose View > Encoding > Unicode (UTF-8)

Mozilla Firefox:

From the menu bar, choose View > Character encoding > Unicode (UTF-8)

Google Chrome:

Click the Customize and Control button to the right of the URL field, then choose Encoding > Unicode (UTF-8)

Microsoft Excel: does not support CSV files in UTF-8

Open such CSV files with text editors such as Notepad, store in a different encoding other than UTF-8, then open

with Excel.

Use Notepad as below.

1. Open the CSV file with Notepad, then choose File > Save as ... from the menu.

2. In the dialog, choose All files in the file type drop-down menu.

3. Choose ANSI or Unicode encoding, then save the file.

4. Open the file with Excel.

Hudson PMD Plugin tool has a bug of Hudson PMD Plugin used in reporting PMD using the remote CI server, Hudson and cannot recognize UTF-8-based Korean (or other Asian) rule set files.

Until the bug fix is patched, you need to use english rule set file in order to use the PMD plug-in.

Utilizing inspection report statistics

You can use the hudson PMD Plugin to utilize the statistical information in the inspection reports.

To search statistics on violations from Hudson, it is confirmed as following.
In the Hudson Dashboard, choose a project to review

Choose PMD Warning from the left menu
Next is the initial statistics screen.
PMD result view

Warnings Trend: statistical trend of code inspection warnings in the project

All Warnings: total number of warnings occurred in the project

New Warnings: number or warnings from the most recent build

Fixed Warnings: number of fixed warnings in the most recent build

Summary: displays statistics sorted by priorities (High/Normal/Low)

Detail: displays detailed statistics with tabbed items as below

Packages: statistics per packages

Files: statistics per files

Types: statistics per violation types

Warnings: all warnings

Details: all warnings with detailed information

New: new or unfixed warnings with detailed information

Detailed statistics view

Hudson PMD Plugin’s statistics can be used to measure individual or team performances as well as metrics for code quality improvement.

Packages

Displays per-package violations as below.

Files

Displays per-file violations as below.

Types
Displays per-type violations as below..
Warnings
Displays all warnings as below.

1)
2)
3)

Comma Separated Value
Continuous integration
Line of Code
�

�

�

�

�

Category�
Description�
�
Description�
Detailed description of the violation�
�
Resource�
Violating file name�
�
Path�
Violating file’s path�
�
Location�
Violating line number�
�

�

�

�

�

�

�

�

�

�

�

�

Personal IDE: Check results in Violations Overview of Eclipse IDE or use file-based reporting in CSV1), HTML, TXT, or XML.

Server IDE: Using CI server, Hudson2), Hudson PMD Hudson’s PMD Plugin can be used for inspection reports. See eGovFrame’s Hudson Code Inspection Tools guide.

�

�

�

�

�

�

�

�

�

�

