Scheduling Service
Summary
Scheduling Service supports operations that occur periodically or repeatedly in the application server. It provides the functions similar to the Cron command in UNIX.
The execution environment scheduling service is open source software and uses the Quartz scheduler. This chapter explores the basic concepts of the Quartz scheduler and then how to combine it with Spring providing the IoC service.
Description
Quartz Scheduler
Main elements related with the execution of Quartz scheduler include Scheduler, Job, JobDetail and Trigger.

· Scheduler is a core object managing the Quartz execution environment.

· Job is an interface that defines the operation that users will carry out. It can be scheduled by using Trigger object.

· JobDetail is an object that defines details on jobs such as operation name or group.

· Trigger is an object that defines the execution schedule of job object. It tells the scheduler object when to carry out jobs.

The Quartz scheduler separates the job that defines execution operation and the trigger that defines the execution schedule to provide flexibility. When job and execution schedule are defined, you can change the execution schedule only. And you can define multiple execution schedules for a job.
Quartz Scheduler Usage Sample
Let’s explore a sample that helps understand the Quartz scheduler. This sample shows how to use Quartz and configure a user job.

User-defined Job

To produce a job object, the user implements the org.quartz.Job interface. If a serious error occurs, the JobExecutionException can be thrown. The Job interface is a single method and defines execute().

 public class DumbJob implements Job {

 public void execute(JobExecutionContext context)

 throws JobExecutionException

 {

 System.out.println("DumbJob is executing.");

 }

 }

· DumbJob implements Job inteface’s execute() method.

· The execute() method simply outputs the message meaning the Job is executed.

Quartz code
 JobDetail jobDetail =

 new JobDetail("myJob",// Job name
 sched.DEFAULT_GROUP, // Job group name(A 'null' value is defineded as DEFAULT_GROUP)

 DumbJob.class); // Job class to execute

 Trigger trigger = TriggerUtils.makeDailyTrigger(8, 30); // Executes at 08:30 everyday
 trigger.setStartTime(new Date()); // Starts instantly
 trigger.setName("myTrigger");

 sched.scheduleJob(jobDetail, trigger);

· First, to configure Job, define JobDetail class.

· Use TriggerUtils to create a trigger that execute at 08:30 everyday.

· Finally, register the JobDetail and Trigger in Scheduler.

Combination of Spring and Quartz

Spring provides an integrated class for Scheduling support. Spring 2.5 supports Timer and Quartz scheduler included in JDK 1.3 or later versions. Here, we will discuss how to combine Quartz scheduler and Spring.
In order to combine with Quartz scheduler, Spring supports so that Quart Scheduler JobDetail and Trigger to Bean. The following sample shows how to create a Quartz operation, schedule the operation and how to start it.

Operation Creation
Spring provides following two ways of creating a operation.

· JobDetailBean is used; inherit QuartzJobBean to create a Job class.
· MethodInvokingJobDetailFactoryBean is used to call the method of Bean object directly.
Operation Creation Using JobDetailBean

JobDetail is an object that contains the information required for operation execution. Spring provides JobDetailBean for the creation of JobDetail bean creation.

JobDetailBean Source Code
package egovframework.rte.fdl.scheduling.sample;

public class SayHelloJob extends QuartzJobBean {

private String name;

public void setName (String name) {

this.name = name;

}

@Override

protected void executeInternal (JobExecutionContext ctx) throws JobExecutionException {

System.out.println("Hello, " + name);

}

}

· SayHelloJob class overrides executeInternal(..) of QuartzJobBean in order to create a operation.

JobDetailBean configuration
 <bean id="jobDetailBean"

class="org.springframework.scheduling.quartz.JobDetailBean">

<property name="jobClass" value="egovframework.rte.fdl.scheduling.sample.SayHelloJob" />

<property name="jobDataAsMap">

<map>

<entry key="name" value="JobDetail"/>

</map>

</property>

 </bean>

· Use jobDataAsMap object to deliver the property information required for job configuration to JobDetail object.

Operation Creation using MethodInvokingJobDetailFactoryBean

Source Code

package egovframework.rte.fdl.scheduling.sample;

public class SayHelloService {

private String name;

public void setName (String name) {

this.name = name;

}

public void sayHello () {

System.out.println("Hello, " + this.name);

}

}

· Defines Bean class for operation execution.

Configuration

<bean id="sayHelloService" class="egovframework.rte.fdl.scheduling.sample.SayHelloService">

<property name="name" value="FactoryBean"/>

</bean>

<bean id="jobDetailFactoryBean"

class="org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean">

<property name="targetObject" ref="sayHelloService" />

<property name="targetMethod" value="sayHello" />

<property name="concurrent" value="false" />

</bean>

· Defines MethodInvokingJobDetailFactoryBean in order to create the operation that calls directly method of the defined Bean object.

Operation Scheduling
Two types of trigger are used in Spring: SimpleTriggerBean and CronTriggerBean. SimpleTrigger is used in simple scheduling such as time, frequency and waiting time. CronTrigger is similar to Cron command of UNIX and used in complicated scheduling. CronTrigger can be configured to execute a job in the time, day and month. The following is to schedule the created operation by using SimpleTriggerBean and CronTriggerBean.
Confirguration using SimpleTriggerBean
<bean id="simpleTrigger" class="org.springframework.scheduling.quartz.SimpleTriggerBean">

<property name="jobDetail" ref="jobDetailBean" />

 <!—Start instantly -->

<property name="startDelay" value="0" />

<!—Execute every 10 seconds -->

<property name="repeatInterval" value="10000" />

</bean>

· Use JobDetailBean to register the created operation in Trigger for scheduling. SimpleTriggerBean is configured to is started instantly and executed every 10 seconds.

Configuration using CronTriggerBean

<bean id="cronTrigger" class="org.springframework.scheduling.quartz.CronTriggerBean">

<property name="jobDetail" ref="jobDetailFactoryBean" />

<!—Execute every 10 seconds -->

<property name="cronExpression" value="*/10 * * * * ?" />

</bean>

· Use MethodInvokingJobDetailFactoryBean to register the created operation in Trigger for scheduling. CronTriggerBean is set to be executed every 10 seconds. For details on Cron expression, refer to Quartz Cron expression.
Staring the Operation
In order to start the scheduled operation, Spring provides SchedulerFactoryBean.

Configuration

<bean id="scheduler" class="org.springframework.scheduling.quartz.SchedulerFactoryBean">

<property name="triggers">

<list>

<ref bean="simpleTrigger" />

<ref bean="cronTrigger" />

</list>

</property>

</bean>

· Use SchedulerFactoryBean to Trigger based on SimpleTriggerBean and CronTriggerBean.

References
· Quartz manual
· Spring Scheduling manual
· Quartz API
· Spring API
· Quartz Cron expression
